UNIVERSIDAD DE COSTA RICA INVESTIGACIONES

ESCUELA DE CIENCIAS DE LA EN BASES DE DATOS Y

COMPUTACION E INFORMATICA PROGRAMACION

 LNGrep: easy and secure xBase program translation

 by

 Adolfo Di Mare

 adimare@cariari.ucr.ac.cr

 Phn: (506) 207-4020

 Fax: (506) 438-0139

 ┌──────────────────────────────┬──────────────────────────────┐

 │ LNGrep is a simple tool that │ LNGrep es una herramienta │

 │ will help you with the │ simple que le ayudará a │

 │ translation of xBase │ traducir programas escritos │

 │ programs into foreign │ en algunos de los dialectos │

 │ languages without │ xBase a lenguas foráneas sin │

 │ compromising the original │ necesidad de comprometer el │

 │ source code. │ código fuente original. │

 └──────────────────────────────┴──────────────────────────────┘

Abstract:

========

As the need to accommodate a number of (natural) languages grows,

it becomes important to be able to write programs that handle

multilingual input and output. LNGrep is a complete system that

can assist in the translation of xBase programs into foreign

languages. Whoever is in charge of the translation will not need

to edit the source files. Furthermore, all the versions for each

program reside in the same file, which cuts down on the complexity

of maintaining each version of the translated programs.

Adolfo Di Mare: Researcher at the Escuela de Ciencias de la

Computación e Informática at the Universidad de Costa Rica, where

he has earned the position of Profesor Catedrático. He is in

charge of the Programming Courses, and he is the president of the

Software Engineering Area Council. He is Tutor at Collegium

Stvdivm Generale at the Universidad Autónoma de Centro América,

where he earned the position of Cathedraticum. He achieved his

Licenciatura at the Universidad de Costa Rica and his MSc in

Computer Science at the University of Californa, Los Angeles.

This work was funded by the Universidad de Costa Rica, under

research project 326-93-256 "DBgen: generación automática de

programas a partir de su base de datos".

 LNGrep: easy and secure xBase program translation

 ===

 For many years now, my brother Luis Alberto has been a gold

mine of ideas for programming projects. He keeps coming up with

weird requirements that I enjoy transforming into working

programs.

 The other day he came to my house and asked me to develop a

program to translate source xBase code from English into Spanish,

and viceversa. He wasn't expecting an AI program: what he needed

was a way to translate every Spanish literal string in the program

into its corresponding English version. A program would thus have

two versions: one in the English language and the other in

Spanish. Their differences would be minor, because only the

string literals and other minor details would be changed in each

version of program. Luis needed this program because one of his

clients is an international corporation with many subsidiaries,

both in the USA and in the Caribbean, and the management needed to

use the same programs throughout. This can hardly be considered a

special case in these days of "modern globalization".

 Luis told me that there is a large market of organizations

that serve non-english-speaking customers, and that the

opportunity to earn lots of money was there for those who came up

first with the right translating software. However, to perform

the translation there was a special requirement: "You should not

touch the source files", he told me. This is hardly an out-of-

line requirement. For most companies, their programs are very

important. If you are contracting a consulting firm to have some

work done, it is only normal for you to take the path of lowest

risk. No company likes a third party messing around with its

source code; it's just too easy to delete or change a line, and

wreck a whole program.

 In our first conversation, Luis told me: "Adolfo, I want you

to create a TEXTFILE where all the changes are done, and later

applied to the source files". That seemed like a good idea: I

would write a program to extract from the source files all the

lines that need to be translated, then someone translates them,

and they are later reapplied to the source files. I immediately

sat down to produce the LNGrep System to translate xBase programs.

 I took the following premises as truth. First, the lines that

needed translation were those that had an xBase string in them.

This still holds true in 95% of the cases, and the remaining 5% of

cases are very difficult to handle with a general-purpose program.

Secondly, I assumed that the translations would be made by a non-

programmer, which meant that a TEXTFILE where the translations

would take place should be used. Eventually, a programmer could

take to look in the source code. Thirdly, I decided not to

support TEXT-ENDTEXT blocks.

 ┌───┐

 │ PHASE 1: TRANSLATION │

 │ │

 │ source0.prg \ ┌────────┐ │

 │ source1.prg >--> │ LNGrep │ -------> TEXTFILE │

 │ source2.prg / └────────┘ │

 │ │

 │ Plain ┌────────┐ Translated │

 │ TEXTFILE ------> │ EDIT │ -------> TEXTFILE │

 │ └────────┘ │

 │ │

 │ Translated ┌────────┐ / source0.prg │

 │ TEXTFILE ------> │LNGapply│ -->< source1.prg │

 │ └────────┘ \ source2.prg │

 │ │

 │ PHASE 2: PRODUCTION │

 │ │

 │ source0.prg \ ┌────────┐ / source0.prg │

 │ source1.prg >--> │ LNGswap│ -->< source1.prg │

 │ source2.prg / └────────┘ \ source2.prg │

 │ │

 │ source0.prg \ ┌────────┐ │

 │ source1.prg >--> │LNGclean│ -------> clean.all │

 │ source2.prg / └────────┘ │

 │ │

 │ Figure 1 │

 └───┘

 I named this approach the LNGrep System as a somewhat

(un)fortunate association with the UNIX grep program, that

extracts from a text file all those lines that have a common

string (FIND is the downsized MS/DOS version of grep). The LNGrep

programs to translate into a foreign language xBase source code

are the following:

 - LNGrep: Extracts into a TEXTFILE all the xBase strings

 from the source code.

 - LNGapply: Inserts into the source code the translated lines

 from TEXTFILE.

 - LNGswap: Changes the language of the source programs by

 commenting out translated lines.

 - LNGclean: Removes all translation annotations from the

 source files to obtain the original files.

Figure 1 is a scheme of how these programs work together.

 ┌───┐

 │ ════════════ ORIGINAL source ════════════ │

 │ xCust = "Enter Customer Code" │

 │ │

 │ ═══════════ TRANSLATED source ═══════════ │

 │ xCust = "Enter Customer Code" && LNG(us) │

 │ *xCust = "Código de Cliente" && LNG(sp) │

 │ │

 │ Figure 2 │

 └───┘

 There are many ways to implement the above scheme. The one I

chose keeps in every source file all the program versions for each

language. For this, what I did was to comment out in each source

file all the translated source lines except the first one. To

avoid confusing a translated line with any comment line, I also

included an annotation in every translated line to identify it.

Let us suppose that the original segment of code is what's shown

in Figure 2 under "original source". After each string is

translated and all the translations are annotated and included in

the source file, this segment of code will look like what's shown

under "translated source".

 In the example of Figure 2, what happened is that the source

line that had a string in need of translation got duplicated in

the final source of the program. Within each group of translated

lines, the first one is the English version, and the other ones

are for each foreign language version.

 It's easy to tell apart each group of translated lines,

because the first line in a group is always a non-commented-out

line, and it always has a language annotation of the form

LNG(<language>), where the string <language> is chosen by the

programmer. The rest of the lines in a string group are commented

out lines, with a different language annotation. This scheme is

quite flexible, because all the language versions of a program

module can reside in a single source file:

 @ 14,20 say "Beautiful!" && LNG(us)

 *@ 14,20 say "¡Precioso!" && LNG(sp)

 *@ 14,20 say "¡Bellissimo!" && LNG(it)

┌──┐

│*: SHORT.prg - Sample program │

│ xCustNo = " " │

│ @ 12,20 SAY "Customer Code" get xCustNo │

│ read │

│ @ 14,20 SAY "Hello, World!" │

│ CALL EnBox(xCustNo, 5) │

│*: EOF: SHORT.prg │

├──┤

│* EnBox.prg │

│PARAMETERS row, str │

│* This procedure centers "str" at "row" on the screen │

│* and surrounds it with a double border box. │

│* - row < 23 is required │

│ │

│PRIVATE j │

│j=IIF(''=str,'*',SUBSTR(LTRIM(RTRIM(str)),1,75)) │

│* SET EXACT OFF ==> ('abc'='a')=.T. .AND. ('a'='abc')=.F. │

│IF row <= 23 │

│ @ row-1, (80-LEN(j))/2 - 2 TO ; │

│ row+1, (80-LEN(j))/2 + LEN(j) + 1 DOUBLE │

│ENDIF │

│@ row, (80-LEN(j))/2 SAY j │

│*: EOF: ENBOX.prg │

│ Figure 3 │

└──┘

 The inner workings of the LNGrep system can be best explained

using an example. Let's suppose that we need to translate the

programs SHORT.prg and ENBOX.prg, shown in Figure 3.

 The first step is to invoke LNGrep to obtain a TEXTFILE that

contains all the lines that should be translated. For this, LNGrep

scans the source files SHORT.prg and ENBOX.prg looking at every

line that has either a quote (') or double quote ("). In any xBase

language a string is enclosed in either quote character. If

directory C:\PRG\SOURCE contains only these two source files, the

command line invocation for LNGrep is the following:

 C:\> cd \prg\source

 C:\PRG\SOURCE> LNGrep -add *.prg LNG(us) >TEXTFILE

┌──┐

│*==> File [SHORT.PRG] && LNG(us) │

│[]---[2:1]│

│ xCustNo = " " && LNG() │

│ xCustNo = " " && LNG(us) │

│[]---[3:1]│

│ @ 12,20 SAY "Customer Code" get xCustNo && LNG() │

│ @ 12,20 SAY "Customer Code" get xCustNo && LNG(us) │

│[]---[5:1]│

│ @ 14,20 SAY "Hello, World!" && LNG() │

│ @ 14,20 SAY "Hello, World!" && LNG(us) │

│[]---[0:0]│

│*==> File [ENBOX.PRG] && LNG(us) │

│[]---[8:1]│

│j=IIF(''=str,'*',SUBSTR(LTRIM(RTRIM(str)),1,75)) && LNG() │

│j=IIF(''=str,'*',SUBSTR(LTRIM(RTRIM(str)),1,75)) && LNG(us) │

│[]---[0:0]│

│ │

│ Figure 4 │

└──┘

 As with many other DOS programs, LNGrep accepts wildcards, as

in [*.prg]. It also accepts optional command line arguments, that

have the form [-/+]<option>. For example, the three command line

options "-add", "+add" and "/add" are equivalent, and tell LNGrep

to include a new line with an empty annotation for each of the

quoted lines in the source files. TEXTFILE is the name of the file

that will contain all the annotated lines. The new contents in

TEXTFILE are shown in Figure 4.

 Note that every quoted line appears twice in TEXTFILE, as a

result of using option "-add" when invoking LNGrep. The first

line contains the empty language annotation LNG(). The second

line is the source line as it appears in the source file, but it

includes the default annotation, LNG(us) in this case. When

options "+add" isn't specified in the command line, then LNGrep

will not duplicate lines: this is very useful when running LNGrep

on an already-annotated source file.

 An annotation is just a comment at the end of a line that

tells the LNGrep system which language the line corresponds to.

Hence, all the lines that have the LNG(us) annotation are written

in the English language; those annotated with LNG(sp) are written

in Spanish. As many language versions as required can reside in

the same source file (The program limit for LNGrep is 100

languages, which is more than anybody will ever need).

┌──┐

│*==> File [SHORT.PRG] && LNG(us) │

│[]---[2:1]│

│ xCustNo = " " && LNG() │

│[]---[3:1]│

│ @ 12,20 SAY "Customer Code" get xCustNo && LNG(us) │

│ @ 12,20 SAY "Código del Cliente" get xCustNo && LNG(sp) │

│[]---[5:1]│

│ @ 14,20 SAY "¡Hola, Mundo!" && LNG(sp) │

│ @ 14,20 SAY "Hello, World!" && LNG(us) │

│[]---[0:0]│

│*==> File [ENBOX.PRG] && LNG(us) │

│[]---[8:1]│

│j=IIF(''=str,'*',SUBSTR(LTRIM(RTRIM(str)),1,75)) && LNG() │

│[]---[0:0]│

│ │

│ Figure 5 │

└──┘

 To translate the strings to another language, all the lines

in TEXTFILE should be carefully edited. In this example, the

result of editing TEXTFILE yields what's shown on Figure 5.

 Note that every first line in a string group is edited to

obtain its foreign-language translation. Also, the empty

annotation LNG() is substituted by the foreign language

annotation, which is LNG(sp) in this example. Some lines that

don't need translation are left alone in the string group, and

their annotation is LNG().

 The LNGgrep programs are smart enough to distinguish

correctly each group of lines, allowing for flexible editing. For

example, it doesn't matter whether the LNG(us) annotation appears

as the first one in the group (as is the case in the "Customer

Code" line), or in any other position ("Hello, World!").

 Whoever does the translation works only in TEXTFILE, and not

the source files. This is very useful because a non programmer

can perform the translation, without ever handling the original

source files. Also, it makes easier to check the translation,

editing or printing TEXTFILE. However, it is very important that

the line numbers in the line separators []---------[nn:mmm] not be

changed. These numbers are used by program LNGapply to replace

lines in the source files with the translated ones from TEXTFILE.

 It is valid to delete a whole group of lines from TEXTFILE

altogether, but it is always necessary to avoid deleting any of

the *===> FILE [] lines. The source files should not be changed

after TEXTFILE is produced with LNGrep and before they are changed

with LNGapply.

┌──┐

│*: SHORT.prg - Sample program │

│ xCustNo = " " && LNG() │

│ @ 12,20 SAY "Customer Code" get xCustNo && LNG(us) │

│*@ 12,20 SAY "Código del Cliente" get xCustNo && LNG(sp) │

│ read │

│ @ 14,20 SAY "Hello, World!" && LNG(us) │

│*@ 14,20 SAY "¡Hola, Mundo!" && LNG(sp) │

│ CALL EnBox(xCustNo, 5) │

│*: EOF: SHORT.prg │

├──┤

│* EnBox.prg │

│PARAMETERS row, str │

│* This procedure centers "str" at "row" on the screen │

│* and surrounds it with a double border box. │

│* - row < 23 is required │

│ │

│PRIVATE j │

│j=IIF(''=str,'*',SUBSTR(LTRIM(RTRIM(str)),1,75)) && LNG() │

│* SET EXACT OFF ==> ('abc'='a')=.T. .AND. ('a'='abc')=.F. │

│IF row <= 23 │

│ @ row-1, (80-LEN(j))/2 - 2 TO ; │

│ row+1, (80-LEN(j))/2 + LEN(j) + 1 DOUBLE │

│ENDIF │

│@ row, (80-LEN(j))/2 SAY j │

│*: EOF: ENBOX.prg │

│ Figure 6 │

└──┘

 Program LNGapply should be used to include the changes in the

source file:

 C:\> cd \prg\source

 C:\PRG\SOURCE> LNGapply TEXTFILE LNG(us)

After applying the translated lines from TEXTFILE, the contents

for SHORT.prg and ENBOX.prg will be what it's shown on Figure 6.

 LNGapply doesn't need any wildcard file designators because

the source file names appear within TEXTFILE in every FILE line:

 *==> File [SHORT.PRG] && LNG(us)

 *==> File [ENBOX.PRG] && LNG(us)

LNGapply scans TEXTFILE until it finds a group of translated

lines, as delimited by the line separators []---------[nn:mmm].

The numeric value "nn" is the number of the first line of the

group of lines that should be substituted by those in TEXTFILE.

The line numbers "nn" appear in increasing order within TEXTFILE.

The value "mmm" is the number of lines that should be removed from

the source file. The first time that LNGapply is run, number "mmm"

is one (1), because the source files don't have any language

annotations yet. There are no line counts for TEXTFILE; only for

the source files. For example, the line separator []------[7:2]

means to LNGapply to substitute two [nn:2] lines in the source

file, beginning at line number seven [7:mmm], by those that appear

below the line separator. Any group of lines can have one or more

lines.

 As expected, there are two lines instead of one for each of

the lines that have been translated. This is the result of

applying the translations to the source files. The first line has

the English language annotation LNG(us), and the second one is the

translation of the first one. This later line is commented out,

and has the Spanish annotation LNG(sp). In Figure 6 the active

language version is English.

┌──┐

│*: SHORT.prg - Sample program │

│ xCustNo = " " && LNG() │

│ @ 12,20 SAY "Código del Cliente" get xCustNo && LNG(sp) │

│*@ 12,20 SAY "Customer Code" get xCustNo && LNG(us) │

│ read │

│ @ 14,20 SAY "¡Hola, Mundo!" && LNG(sp) │

│*@ 14,20 SAY "Hello, World!" && LNG(us) │

│ CALL EnBox(xCustNo, 5) │

│*: EOF: SHORT.prg │

│ Figure 7 │

└──┘

 Suppose now that it is required to obtain the Spanish version

of the source files. This is where program LNGswap is used:

 C:\> cd \

 C:\> LNGswap c:\prg\source*.prg lng(sp)

Figure 7 shows how program LNGswap changed SHORT.prg, to make the

Spanish version the current one. Note that LNGswap can work in

other directories besides the current. As the contents of

ENBOX.prg are the same for both the English and the Spanish

version, LNGswap doesn't change it.

┌──┐

│C:\> cd \prg\source │

│C:\PRG\SOURCE> fc short.bak short.prg │

│ASCII differences between │

│ c:\prg\source\SHORT.BAK and c:\prg\source\SHORT.PRG │

│ │

│Replace lines 3-4 in c:\tmp\SHORT.BAK │

│< @ 12,20 SAY "Customer Code" get xCustNo && LNG(us) │

│< *@ 12,20 SAY "Código del Cliente" get xCustNo && LNG(sp) │

│ │

│with lines 3-4 from c:\tmp\SHORT.PRG │

│> @ 12,20 SAY "Código del Cliente" get xCustNo && LNG(sp) │

│> *@ 12,20 SAY "Customer Code" get xCustNo && LNG(us) │

│ │

│Replace lines 6-7 in c:\tmp\SHORT.BAK │

│< @ 14,20 SAY "Hello, World!" && LNG(us) │

│< *@ 14,20 SAY "¡Hola, Mundo!" && LNG(sp) │

│ │

│with lines 6-7 from c:\tmp\SHORT.PRG │

│> @ 14,20 SAY "¡Hola, Mundo!" && LNG(sp) │

│> *@ 14,20 SAY "Hello, World!" && LNG(us) │

│ │

│ Figure 8 │

└──┘

 The only difference between this version of SHORT.prg and the

previous one in Figure 6, which got saved under the name SHORT.bak

by LNGswap, is that in this one every annotated first line has the

Spanish language annotation LNG(sp). Figure 8 is the result of

running the DOS command FC [File Compare] to show the differences

between SHORT.prg (the "LNG(sp)" version) and SHORT.bak (the

"LNG(us)" version).

 Why didn't LNGswap change file ENBOX.prg? The answer is

simple. As it can be seen in Figure 6, the only annotated line in

ENBOX.prg is this one:

 t=IIF(''=str,'*',SUBSTR(LTRIM(RTRIM(str)),1,75)) && LNG()

The annotation of this line is LNG(), the language-independent

annotation. This means that no matter what the current active

language is, a line with an LNG() empty annotation will not be

changed by LNGswap. Neither will it ever be included in a TEXTFILE

by LNGrep.

 A (minor) nuisance of this scheme is that some of the lines

get shifted one space to the right. For example, if the source

file has the following left-justified line:

 ┌───┐

 │@ 14,20 say "Hello, World!" │

 └───┘

then after annotation and translation it becomes the following:

 ┌───┐

 │ @ 14,20 say "Hello, World!" │

 │*@ 14,20 say "¡Hola, Mundo!" && LNG(sp)│

 └───┘
An extra space at the beginning of the line is inserted to make

room for the comment character '*'. One way around this is to

shift every line in the source file one space to the right.

However, it will be easy to find many software project managers

that won't agree with this correction.

 The last option I added to LNGrep is "-new". The first time

LNGrep is run on a set of files, the option "-add" is used to have

LNGrep duplicate each line in TEXTFILE. But when maintenance is

performed on a module, it is nice to have LNGrep output to

TEXTFILE only the newer lines to translate. These are lines that

have xBase strings in them, but that don't have a language

annotation. When option "/new" is specified in the command line,

only strings that don't have language annotations are written into

TEXTFILE. Hence, after the very first time, it is usual to invoke

LNGrep as follows:

 C:\> LNGrep c:\prg\source*.prg lng(sp) -new >TEXTFILE

┌──┐

│************* │

│* SHORT.PRG * │

│************* │

│*: SHORT.prg - Sample program │

│ xCustNo = " " │

│ @ 12,20 SAY "Código del Cliente" get xCustNo │

│ read │

│ @ 14,20 SAY "¡Hola, Mundo!" │

│ CALL EnBox(xCustNo, 5) │

│*: EOF: SHORT.prg │

│ Figure 9 │

└──┘

 When maintaining the source programs, many times it can

become quite cumbersome to examine the annotated source file.

Program LNGclean can help here. LNGclean can remove all the

annotated lines from a source file, leaving only those for the

chosen language. To store in file "short.sp" a cleaned-up Spanish

version of SHORT.prg, the following command can be used:

 C:\> LNGclean c:\prg\source\short.prg lng(sp) >short.sp

The result of this command is shown in Figure 9.

 The English version of SHORT.prg can be obtained just as

easily. Figure 10 shows the result of using the command:

 C:\> LNGclean c:\prg\source\short.prg lng(us) >short.us

that leaves in C:\short.us the English version of SHORT.prg.

 LNGclean always writes each file name before its contents,

surrounded by an asterisk box. LNGclean can be used to do away

with all the annotations, but a batch (.bat) file is needed for

that. LNGclean does not require the source file to be in any

particular language; it will always extract the version requested

in the command line. LNGclean also accepts wildcards.

 LNGclean can be used to compare the cleaned-up version of the

program with its original source code. If they are different,

then a mistake has crept in to the translation process. If not,

for sure the original version of the program is intact. The DOS

command FC can be used for this, and often it will help to use the

"/w" option to have FC ignore whitespace:

 C:\> cd \prg\source

 C:\PRG\SOURCE> LNGclean short.prg lng(us) >short.us

 C:\PRG\SOURCE> FC short.prg short.us /w

┌──┐

│************* │

│* SHORT.PRG * │

│************* │

│*: SHORT.prg - Sample program │

│ xCustNo = " " │

│ @ 12,20 SAY "Customer Code" get xCustNo │

│ read │

│ @ 14,20 SAY "Hello, World!" │

│ CALL EnBox(xCustNo, 5) │

│*: EOF: SHORT.prg │

│ Figure 10 │

└──┘

 A minor amount of error handling has been implemented in the

LNGrep programs. For example, LNGswap will use the current active

language if it doesn't find the language annotation from the

command line in a string group. Suppose that a segment of code

contains the following:

 xCust = "Enter Customer Code" && LNG(us)

If it is requested that LNGswap produce the French version for

this segment of code, the result will be the following:

 xCust = "Enter Customer Code" && LNG(fr)

 *xCust = "Enter Customer Code" && LNG(us)

LNGswap used the English version in place of the French one

because it found no French annotation in the string group.

 All the programs in the LNGrep system accept wildcards, where

appropriate. When no language annotation is specified, then

LNG(us) is used as a default.

 Advantages and Disadvantages

 ============================

 It is not clear that the LNGrep approach is the best one to

translate programs. The main shortcomings of this system are the

following:

[A] The source code becomes "stained" with language annotations.

[B] Many lines appear more than once in the source code, which

 makes it more difficult to read and maintain.

[C] If a line number in the line separators []---------[nn:mmm] is

 changed or deleted in TEXTFILE, then the result can be a

 seriously damaged source file.

[D] LNGrep is slow.

[E] Multiple statement lines are not supported.

[F] The source code must be recompiled to obtain each language

 version, this is, different executables are required for each

 language version.

 Complaint [A] is, to a certain extent, solved with the use of

program LNGclean. The following commands can do the trick:

 C:\> LNGswap c:\prg\source*.prg lng(us)

 C:\> LNGclean c:\prg\source*.prg lng(xx) >clean.all

The first line makes the current language LNG(us). The second one

leaves in file "clean.all" all cleaned-up sources for language

"xx", but as there are no LNG(xx) annotations anywhere, then the

one used is the English version that was just made current by

LNGswap. Some further work is necessary to manually split

"clean.all" to obtain all the original sources.

 Is there a way to "clean-up" a source file to work on it,

edit it, and then reapply the translations? The answer is no.

Maintenance must be done on the "stained" source file. This is

why LNGclean is a solution, to a "certain extent".

 A smart programmer could use programs like DIFF3, capable of

finding the difference between two files to modify a third file

according to these differences, to work on a copy the source file,

edit it, and then make the changes back in the original file:

 C:\> cd \prg\source

 C:\PRG\SOURCE> LNGclean short.prg LNG(us) >tmp.prg

 C:\PRG\SOURCE> edit tmp.prg

 C:\PRG\SOURCE> compile SC00 tmp.prg

 C:\PRG\SOURCE> edit tmp.prg

 C:\PRG\SOURCE> diff3 tmp.prg short.prg ...

 C:\PRG\SOURCE> copy tmp.prg short.prg

 C:\PRG\SOURCE> LNGrep /new short.prg >TEXTFILE

This requires, of course, a "most careful" programmer (I was never

myself confident on the capabilities of DIFF3).

┌──┐

│@echo off │

│:: BatLNG.bat ==> Intermediate step to LNGclean many files │

│echo The original files will be copied to directory BAK │

│if (%2)==() goto help │

│if not (%3)==() goto help │

│if not exist bak\null md bak │

│LNGclean %1 %2 >E:\RamDisk\t.bak │

│copy %1 bak │

│copy E:\RamDisk\t.bak %1 │

│del E:\RamDisk\t.bak │

│goto end │

│ │

│:help │

│echo USAGE BatLNG lngfile[.ext] LNG(language) │

│:end │

├──┤

│C:> for %a in (*.prg) do call BatLNG %a lng(us) │

│ │

│ Figure 11 │

└──┘

 Figure 11 is the BatLNG.bat file that can be used to clean-up

a bunch of files. BatLNG must be invoked from the command prompt

using the DOS FOR command, as shown on the lower part of same

Figure. BatLNG applies LNGclean to a file, and leaves a backup of

the original source in the BAK directory. Even though LNGclean

accepts wildcards, it binds everything into a single file.

 I minimize both complaints [A] and [B] arguing that most

translated literal strings appear in @ GET SAY commands, and those

are never difficult to understand.

 Complaint [C] is difficult to overcome. It would require

heavy machinery to maintain the source code synchronized with the

translations. Even though the LNGrep programs have some error

detection built into them, any (dumb) operator can create havoc.

Those who edit the translation TEXTFILE should be advised to think

ahead when global replacements are performed, or when huge blocks

of data are deleted.

 It is particularly important not to make a numeric global

string translation, as in subst(1==>2,noask), because many line

separators will fit the pattern. For example, []---[1,1] becomes

[]--[2,2]! Also, it isn't wise to move around blocks of code.

Probably it is easier to require every translator to be a

programmer.

 Complaint [D] can be overcome with money. Just get a faster

computer. RAM is not an issue. It is cheaper to re program the

function LNGtools.Get_Line(), but then a program with a very long

line could be damaged. Here "long" means "a line with more than

250 characters".

 Complaint [E] cannot be overcome, because xBase languages

don't allow comments within statements. For example, the following

code will not compile:

 ALFA =;

 "radio boo-boo" +; && LNG(sp)

 * "radio gaga" +; && LNG(us)

 ALFA + ALFA

 This is a problem in the language implementation. The only

solution I have found is to use intermediate variables:

 temp = "radio boo-boo" && LNG(sp)

 *temp = "radio gaga" && LNG(us)

 ALFA = temp + ALFA + ALFA

 I know that this isn't good enough, because only a programmer

can change the original source code into something that LNGrep can

process. Should you find a better trick, please let me know.

 Complaint [F] can be overcome with a completely different

approach. One way is to use a Resource Compiler to maintain a

database with strings that get read at run time; another is to

write a program than changes the strings stored in the object file

(I believe both approaches have been implemented, at least for the

C language). People have come up with other variations on theses

ideas, but the LNGrep approach seems cleaner, and far easier to

implement. The LNGrep system should be good enough for most small

programming shops. Small is beautiful.

 The advantages of this approach are the following:

[A] There is only one source code. With Source Control Systems,

 such as Tlib or PVCS, it is possible to maintain several

 versions of a program. However, the fewer files a system has

 the easier it is to manipulate, and this is the approach

 supported by LNGrep. To obtain a different language version

 you just run LNGswap on the source code and recompile.

[B] The original source code is not manipulated by the person that

 does the translation. Often those who can translate neatly

 cannot manipulate directly the source files. The LNGrep

 systems allows the division of labor that reduces the cost of

 the translation.

[C] It's easy to know what has been translated. Just run LNGrep

 without option "+new" on the original source file to get a

 complete TEXTFILE that contains all the translated lines. An

 alternative is to use GREP to extract every line that has an

 annotation:

 C:\PRG\SOURCE> GREP -n+ -i LNG(*.prg

 (Note the absence of the closing parenthesis ")").

[D] Lines that need no translation can be annotated with LNG().

 This prevents many errors that otherwise could creep in when

 manipulating a lot of data.

[E] LNGrep is free! Just download it from:

 http://www.di-mare.com/adolfo/p/src/LNGrep.zip
 There are more advantages to the LNGrep system than

disadvantages, which means that you should start using it right

away. Should you find a bug, just contact me and I will try to

fix the problem.

 As usual, the use of the LNGrep system is at your own risk!

 Implementation

 ==============

 I implemented this programs using the Borland Turbo Pascal

programming language. I chose Turbo because it's a language that

I have mastered through the years. For my programming courses at

the University I use Turbo. Turbo was natural for me to use, but

other languages are just as valid for a project like this.

 The LNGrep system consists of four programs. The source code

for each program is in a file that has the same name as the

program:

 - LNGapply.pas <==> LNGapply.exe

 - LNGrep.pas <==> LNGrep.exe

 - LNGswap.pas <==> LNGswap.exe

 - LNGclean.pas <==> LNGclean.exe

 All the programs share a library of tools that I developed

for this project called LNGtools.pas. The important components of

LNGtools are the following:

 <=> TYPE Tokenized_T, used to parse all input lines that contain

 an xBase string.

 <=> OBJECT TString_Group, used to store all the input lines that

 belong to the same string group. In every program, the

 variable SG contains all the lines in the current string

 group.

 <=> String handling routines, like RTrim(STRING):STRING, are

 needed to joggle input lines.

 <=> Tokenize() is as procedure that takes apart input lines and

 figures out whether they have an LNG() annotation, and

 whether or not they are a comment line.

 <=> Command_Line() is the procedure used to parse the command

 line argument. It relies a lot on System.ParamStr().

 Each of the programs are pretty straight forward. There is a

main loop where each program line gets read, until the end of file

is reached. For each line, it is decided whether it belongs to the

current string group, in which case it gets added to it, or if it

belongs to a new group, then the old one is processed out and a

new one is begun. Some care must be taken because there are

several cases to be handled, but there is nothing special in that

code.

 I have tried to document fairly well the code, just in case

you need to understand it. The only part where I was forced to

use OOP is when I implemented OBJECT TString_Group, because using

regular procedural programming there would had forced me to invent

many unnecessary names. All the programs can be compiled with

Turbo Pascal v5.5, or a later version.

 Conclusion

 ==========

 As economies become more dependent on each other, the

language barrier becomes more of a problem. Systems like LNGrep

can help to overcome this problem, and increase productivity

throughout.

 Acknowledgments

 ===============

 My brother Luis Di Mare came up with the idea of LNGrep.

Later, my friends Enrique Bermúdez and Joseph Bannister provided

valuable criticism and editorial suggestions. Lastly, this

document was written using Eric Meyer's superb editor VDE.com,

which he distributes as shareware. For most purposes, it is

better than the commercially available mega-monsters.

 BIBLIOGRAPHY

 ============

[1] Castillo, JoAn: "ANSI Standards Committee makes progress";

 Data Based Advisor; July 1993; pg-76.

[2] Petzold, Charles: "Unicode, Wide Characters, and C"; PC

 Magazine; Vol 12 #3; Nov-9, 1993; pg 369.

[3] Plauger, P. J.: "The header <locale.h>"; The C Users Journal;

 vol 9 #3; March 1991; pg 7.

[4] Plauger, P. J.: "The Standard C Library"; Prentice Hall;

 1991.

 DOWNLOAD

 ========

 http://www.di-mare.com/adolfo/p/src/LNGrep.zip
UNIVERSIDAD DE COSTA RICA INVESTIGACIONES

ESCUELA DE CIENCIAS DE LA EN BASES DE DATOS Y

COMPUTACION E INFORMATICA PROGRAMACION

 LNGrep: fácil y segura traducción de programas xBase

 por

 Adolfo Di Mare

Resumen:

LNGrep es un sistema completo que puede asistir en la tarea de

traducir a lenguas foráneas programas escritos en algunos de los

dialectos xBase. Quien se encarga de realizar la traducción nunca

necesita editar los programas fuente. Más aún, todas las

versiones de cada programa residen en el mismo archivo, lo que

recorta la complejidad de mantener cada una de las versiones del

programa traducido.

Este trabajo ha sido patrocinado por la Universidad de Costa Rica,

en el Proyecto de Investigación "DBgen: Generación Automática de

Programas a partir de su Base de Datos", inscrito en la

Vicerrectoría de Investigación con el número 326-93-256.

