|
Abstract non Polymorphyc Matrix:
|
Gaussian elimination implementation. More...
Go to the source code of this file.
Defines | |
| #define | Gaussian_Elimination_h |
| #define | English_dox "Doxygen English documentation" |
| Doxygen English documentation. | |
Functions | |
| template<class E > | |
| E | abs (const E &r) |
Returns the absolute value for r. | |
| template<class Matrix > | |
| Matrix::value_type | Gaussian_Elimination (const Matrix &M, Matrix &X, const Matrix &B) |
| Gaussianan Elimination. | |
| #define Gaussian_Elimination_h |
Definition at line 17 of file Gaussian_Elimination.h.
| #define English_dox "Doxygen English documentation" |
Doxygen English documentation.
| template< class E > inline E abs | ( | const E & | r | ) | [inline] |
Returns the absolute value for r.
Definition at line 35 of file Gaussian_Elimination.h.
| template< class Matrix > typename Matrix::value_type Gaussian_Elimination | ( | const Matrix & | M, |
| Matrix & | X, | ||
| const Matrix & | B | ||
| ) |
Gaussianan Elimination.
"n" linear equations with "n" unknowns ussign "Gaussianan Elimination".MxX = B: M0,0 M1,0 M2,0 .... Mn-1,0 == B0,0
M0,1 M1,1 M2,1 .... Mn-1,1 == B0,1
M0,2 M1,2 M2,2 .... Mn-1,2 == B0,2
: : : : :
: : : : :
M0,n-1 M1,n-1 M2,n-1 .... Mn-1,n-1 == B0,n-1
"M" is not singular, Gaussian_Elimination() returns its determinant."M" is singular, Gaussian_Elimination() returns 0 (cero)."X".Definition at line 41 of file Gaussian_Elimination.h.
1.8.0