Abstract non Polymorphyc Matrix:
|
Gaussian elimination implementation. More...
Go to the source code of this file.
Defines | |
#define | Gaussian_Elimination_h |
#define | English_dox "Doxygen English documentation" |
Doxygen English documentation. | |
Functions | |
template<class E > | |
E | abs (const E &r) |
Returns the absolute value for r . | |
template<class Matrix > | |
Matrix::value_type | Gaussian_Elimination (const Matrix &M, Matrix &X, const Matrix &B) |
Gaussianan Elimination. |
#define Gaussian_Elimination_h |
Definition at line 17 of file Gaussian_Elimination.h.
#define English_dox "Doxygen English documentation" |
Doxygen English documentation.
template< class E > inline E abs | ( | const E & | r | ) | [inline] |
Returns the absolute value for r
.
Definition at line 35 of file Gaussian_Elimination.h.
template< class Matrix > typename Matrix::value_type Gaussian_Elimination | ( | const Matrix & | M, |
Matrix & | X, | ||
const Matrix & | B | ||
) |
Gaussianan Elimination.
"n"
linear equations with "n"
unknowns ussign "Gaussianan Elimination".MxX = B
: M0,0 M1,0 M2,0 .... Mn-1,0 == B0,0 M0,1 M1,1 M2,1 .... Mn-1,1 == B0,1 M0,2 M1,2 M2,2 .... Mn-1,2 == B0,2 : : : : : : : : : : M0,n-1 M1,n-1 M2,n-1 .... Mn-1,n-1 == B0,n-1
"M"
is not singular, Gaussian_Elimination()
returns its determinant."M"
is singular, Gaussian_Elimination()
returns 0
(cero)."X"
.Definition at line 41 of file Gaussian_Elimination.h.